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ON THE STABILITY OF A NONAUTONOMOUS HAMILTONIAN SY§TEM
UNDER A PARAMETRIC RESONANCE OF ESSENTIAL TYPE

A. P. IVANOV and A. G SOKOL'SKII

The problem of the stability of the &aquilibrium position of an nonautonomous
Hamiltonian system with periodic coefficients, in which two multipliers of the line-
arized system are equal, is analyzed in a nonlinear setting. The stability in the
finite approximation, and formal Liapunov stability or instability are prov-
ed, depending on the Hamiltonian's coefficients.

1. we consider a nonautonomous Hamiltonian system with two degrees of freedom

dgy oH dpy, H . o
it e bt (k=14,2) (1.1)

whose Hamiltonian H = H (s, Pr»?) is analytic in gx, pp in a neighborhood of the trivial equil-
ibrium position
H=Hg+...+Hm+... (1.2)

where the H, are m th-degree homogeneous polynomials in ¢ Pr with 2m -periodic and t-con-
tinuous coefficients /fwwum (£). The stability problem for such a system has been almost
completely solved by now /1,2/. The case which in applied problems corresponds to the so-
called parametric resonance of essential type /3/ remains unsolved and, as a rule, corresponds
to the boundary of the stability region of the linearized system. The study of this case is
necessitated by the desire to have a complete solution to the stability problem in concrete
applied problems of mechanics. An example is the stability problem for the triangular libra-
tion points of the flat elliptic restricted three-body problem under bounded values of eccent-
ricity and mags ratio. Problems of investigating the arbitrary periodic motions in autonomous
Hamiltonian systems with the use of isopower reduction lead to systems of the type being
analyzed.

At first we study the normalization of the linearized system with Hamiltonian H,. In
the case being examined, without loss of generality we can assume that a linear canonic trans-
formation separating the variables has already been made in the system and that the function
H, has been reduced to the form

Hy = hy (g1, 1) + Vabohy (,° + PY) (6, = 1, A > 0) (1.3)

Therefore, for the present we take the original system to have one degreee of freedom and we
consider it in detail.

Let X (f) be the matrix of fundamental solutions of a linear system with Hamiltonian % (g,
P1), normed by the initial condition X (0)mE (E is the unit matrix). Then under parametric
resonance of basic type both eigenvalues of matrix X (2xn) (i.e., the multipliers ¢, viz.,
the roots of the characteristic equation det||X (2n)—pE| =0) are real, equal to each other,
and equal to 1. This signifies that the pure imaginary parts of the characteristic exponents
=ik (p = exp (+2mi};)) are integers of half-integers. In addition, since the matrix X(2n) has
multiple eigenvalues, its normal form (and, consequently, the normal form of the Hamiltonian)
depends upon the multiplicities of the elementary divisors of the characteristic matrix
X (2n) — pE. Thus, we have to distinguish four cases: 1)2A; = 2r 4.4, the elementary divis-
ors are simple; 2) 2\ =2n -+ 1, the elementary divisors are multiple; 3) 2\, = 2n, the
elementary divisors are simple; 4)2i; = 2n, the elementary divisors are multiple. Here n
is an integer which can always be taken as zero, as we shall see below (see (2.4)) .By analogy
with autonomous systems we say that second-order resconance cbtains in cases 1) and 2) and
first-order resonance obtained in cases 3) and 4). The linear transfomation [ gqp, |7 =
N@®la'p' IT with a real symplectic matrix N (f) differentiable and 2w -periodic in ¢, taking
the Hamiltonian #, (¢:,P1) to normal form, can be constructed by analogy with /1,2/.

Theorem 1.1. Hamiltonian &, (g, p;) is taken into one of the following normal forms:
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By (@', p1') = Yk (@ + 20 (A = Y2)s NOy=X()Q(), Q) =i! CO8 Ayt —~sin Ayt

({ L)
?sin Mt cosAgl ! (case L) "
holgd» P)=0, N@=X() (X({t+2n) =X(@) (case 3) (1.8)
Py 1 s 1 — 8y
haig ) =—58py (i==1), NO=XOPQ®, QW=|, , (case 4) (1.6)
The constant matrix P is defined by one of the formulas
A1 0 q—1 1
1 e |

P Zge — 1 1 Vin]zn| *a |, Oys=-——signzy, if 2u==0

3 8 == 8ign Z1a, if 0 P
6 P, 1 g 12, 1 In;& H
: ;%ixul bt — Koy 0

where j, = ¥ [z;, [/ (2n), and z;, (j, k = 1, 2) are the elements of matrix X (2m).

Theorem 1.1 is proved by direct verification of the properties of the matrices N (f).

The normal foxrms (1.4)— (1.6) coincide with the normal forms for autonomous systems (for
which A, has the sense of the frequency of the linear oscillaticns) in the corresponding res-
onance cases. Let us show that in Hamiltonian systems case 2) is never realized. Assume the
contrary: let M=+ n and let the elementary divisors of the characteristic matrix X (2m) — pE
(where ¢ = exp (2nid,) = —1) be multiple. By Liapunov's reducibility theorem such a system neces-
sarily reduces to a constant-coefficient system

dg'ldt = ayq’ + 8126, dp'ldt = ang’ + ayp’ (1.7

The roots of the defining equation of this system must be definition be pure imaginary. Hence
a;; + a5=0 and, consequently, (l1.7) is a canonic system, But the Hamiltonian of any one-
dimensional autonomous canonic system with multiple elementary divisors reduces to form (1.6)
wherein the fundamental matrix Q () (Q(0)=E) has a double eigenvalue ¢ =1 when t=2x. The
furidamental matrix of the original system is similar to Q (1) since X () = N () Q () N"}y. But
similar matrices must have like eigenvalues. Consegquently, the eigenvalues of matrix X@2m
also equal one, which contradicts the initial assumption M=l;+n (p= —1). Therefore, case 2)
need not be examined.

Henceforth we reckon that the linear normalization has already taken place and that the
quadratic part of Hamiltonian (1.2) has the normal form (1.3) in which #A (g, py) is defined by
(1.4)— (1.6) for cases 1), 3), 4), respectively. The stability of a cne-dimensional system in
a nonlinear setting was investigated in /5- 7/ (also see survey /8/) for various interesting
special cases. The most important results were obtained in/6,7/. The case of multidimensional
Hamiltonian systems has almost not been considered. The results in the present paper general-
ize those metioned. In general, it suffices to consider a system with two degrees of freedom
and then to carry all results easily over to the case of n+1 degrees of freedom if only the
characteristic exponents < ily, ...,=il,,, are not connected by parametric resonance relatioms
of combinational or basic type.

2. Let us consider the stability question for system (l1.1) in case 1). In the system we
make a nonlinear normalization such that the new Hamiltonian K acquires a simpler form. For
this we first pass to the complex variables g¢,*, p,* by the formulas (§; = 1)

»* ==—i,%-(— Suge + ipx), m* ==7i§- (ige— Oepr) (k=1,2) (2.1)

In the complex variables we have H,;* = ilg*py* - iA3g,*P,*, where A, = ', in the case being
examined, while the coefficients of form H,* satisfy the realness relations

Bohsoory == imO7 BT IR (2.2)
Then the coefficients of the generating function J§* normalizing the polynomial substitutien
must be the solutions, 2% -periodic in i , of the differential equations /2/
(18t 4 Ty i) Socvainns = Kowasesia = Soovimpn 1 Tvivaapss == Ay (V1 — 1) + Az (Vg — i) (2.3)

where g3, (f) are the coefficients of form Gn* defined uniquely by recurrence formulas from
the coefficients of the terms of lower order (*). From (2.3) we see that if v 3 0 (mod 1),
then we can set Ky, (=0. If ruvus is an integer, we cannot suppress the corresponding
term in the new Hamiltonian, in general. However, we can so choose s:‘wm (t) that only the

*) Markeev, A. P. and Sokol'skii, A. G., Some computational normalization algorithms for
Hamiltonian systems. Preprint No.3l, Inst. Prikl. Mat. Akad. Nauk SSSR, 1976.
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resonant harmonic remains in the Taylor series expansion of Ky, () To be precise, we can
set
(2.4)

o

. 1 * .

B onap: () == Royvinss OXP (— Fuviuan) 1 Hovrvaap: == Guyvapas + EDvivausps == e S G (1) BXP (Porvpnt) G
°

Here the Numbers Xywuy, DPOSSess property {(2.2) and is unchanged under the substitution Ay—
* +n {nis an arbitrary integer). Thus, after a nonlinear normalization up to terms of
order m the Hamiltonian takes the form

K¥* o i;\'IQI*PI* o ingg‘Pz‘ -+ 2 Hvywgup, €XP (-— irv,v,mmt) Q:V, :WP;"‘P;M '+' K:H'l + ... (2.5)

where the summation is carried out over nonnegative indices Vi, vy, Hyy e such that 3L v+
Ve + B + iy m, while Twegp, =2 {integers), Finally, in (2.5} we pass toc real polar vari-
ables (g, are coordinates, r, >0 are momenta} by the formulas

Qi =iV rexpli (8a@s -+ M), Pr* = —8; V) expl—i (6x@n + Axt)) (2.6)

The stability problems for the original system with respect to variables ¢p, pp and for the
normalized system with respect to variables Ty are equivalent.

We restrict the analysis to texrms of up to fourth order inclusive (m = 3,4). The normal
form will be different in the following four subcases (the n are integers): {a) 3i, s&n, 44, %

2n+ 1,8k 9% 2n 4+ 1; 10) 3, = m; 10) §hy = 2n 4 1; 1Q) 83y = 2n + 4.
iIn subcase la) the normal form is:

K = KO 4+ K& (2.7)
KO = @y (pprs® 4 Oy, (@) 71y + oy KV = Ky ., (2.8)
Do (P1) = 284000 008 491 — 28184000 SIB 4@y — 2B1b3ez0 €08 20; — 2a5500 80 20; — Zypep

@y, (91} = —28,5550; 008 2y =~ 28;8ya4y0; sin 2¢; — §dsaynny, Oy = ~fga0s

Theorem 2.1. 1) If a value @* &[0, 2x] exists such that @, (%) =0, while
D’ (§1*) 90, then the equilibrium position is Liapunov-unstable. 2) If D, (9) %0 for any
real @; then the equilibrium position is stable when terms of up to fourth order, inclusive,
are taken in Bamiltonian (1.2). 3) If Dy (p) 50 and the original system has one degree of
freedom, then its eguilibrium position is Liapunov-stable. 4} If for all ©: the function X©
is sign-definite for r; 2> 0, r; >0, then formal stability obtains.

The instability is proved by constructing the Chetaev function /1,2,4/

Vet —rdsin¥, ¥Ye=—or(p—0*+e), 2<a<3 (2.9)

where, by using the periodicity of @ (), we can so select ¢ that the inequality @' (p) << 0
is fulfilled in the neighborhood |[¢;— ¢*{<e. Then in the region

V>0 dai—o*i<ean=B, 0<B<i}
the derivative of function (2.9) relative to the equations of motion with Hamiltonian (2.7}

=T [ (1 — ) Do (1) cos ¥ — oy () sin ¥]+ o+

is positive definite /4/, whence by Chetaev's theorem we obtain the instability of the equili-
brium position.

Since 7 =cobst is an integral of the truncated system with Hamiltonian XK®, we have
that & = sry + K®, where s = sign ®w (p;) too is an integral of the truncated system, i.e.,

dG/dt = 0, and this integral is sign-definite. Hence by Liapunov's stability theorem (G is
the Liapunov function) we obtain the stability of the complete system in the fourth order. If
kg 5= n, where k =3,..., 2m 4+ 1, then from this follows even stability in the m-th order,
and, for an irrational Ay » formal stability /9/).

If the original system is one-dimensional and @ (¢y) % 0, then by Theorem 2.1 from /47
{passage to the variables action-angle and use of Moser's theorem on invariant curves) we
obtain the Liapunov-stability of the equilibrium position. To prove formal stability we note
that after the above-described nonlinear normalization has been carried out for terms up to
infinite ordex, the function (2.7) does not depend explicitly on time, i.e., when the theorem's
hypotheses are fulfilled we have a sign-~definite formal integral. Then, according to the
definition in /9/, the eguilibrium position is formally stable, i.e, stable in any finite order.
In ceoncluding the proof of Theorem 2.1 we note that its hypotheses are easily verified in a
concrete mechanical system. After the substitution z = cos2g; the problem is reduced to
ascertaining the conditions for the location on segment [—1, 1] of the roots of a fourth-degree
algebraic equation, which can be solved in radicals. However, it is convenient to use an
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indirect method of the type of Sturm's method.
For subcase lb)

KO = Qg (@) 1y KO =K+ .., , Doz (Pe) = Zbosso €08 3ip, + 2Bydoses sin 3epy {2.10)
in the noxmal form (2.8).
Theorem 2.2. If in (2.10) glyy - blwe 5= 0, then the equilibrium position is unstable.

For subcase lc) we have

y:m._m . Yy . K
Wi Wi \“2!’; ’2: £ = g

@,y = 2bipe0cos (; + 2515&:} + 25161=onstn {91+ 28,80, +
25(%1:0 cos {@; ~ 28.8,0,) + 2bogo sin (Py — 2815,p4)
Theorem 2.3. If in (2.11) (alhmw + bwe— 3120 ~ Bhgw) 8:8: > 0, then the equilibrium position

is unstable.
Theorems 2.2 ar cj can be proved by using Chetaav's theorem analogously as in /1,2,4/

2.3 ag
and Theorem 2.1, having observed that for any values of the coefficients of functions
ing

{2.13}

o3
and @,, (not vanishing simultanecusly) these functxons will take values of both signs. We
1

maralv romavir +hst cae
TeXely IRRRXA a8t CRE

relations W+ 2h,=n; and A,— 2i,= n,, where n;, n, are integers of different parity. For
subcase ld) we obtain

1 ig srmuivalant &0 the simnidasrnances Fulfilimant ~F e Ao e s
: 8 S{UIVRLENSE Lo T8 SABULRANSOUE ULlLLalSnL oI wie IefChance

0 4 H —
K = @uplpy) 1% -+ Doy (@) 1irg - Ougl, @) s + Dyt KM =K, + .. (2.12)
th,_=2n._“-maf de B8R ) OR sin {o __ 98 fon AR R A 1 O RN
D, 3s00 08 (Pt 388,9,) — 28,8150 sin {9, + 38,8, P} 28:byg1p €08 {Py — 38,8,90) + 2a4450 sin g — Wxﬁz*&s}

Theorem 2.4, 1) If a value g*<s {0, 2n] exists such that @u{m®) = 0, while @, (¢ == 0,
then the equilibrium position is unstable. 2) If forO<{ o, <2n, 0 o, <2n, 1 =0, r,>0
the function KO is sign-definite, then the equilibrium position is formally stahle.

3. et us consider case 3}, when Ay=0 and the characteristic matrix has simple element-
ary divisors. We remark that from the applied viewpoint this case is less interesting than
the case of multiple elementary divisors, considered in Sect.4, since to realize it the ful-
fillment of additional conditions is necessary on the elements of matrix X(2n}, which leads
to rg [X (&x) +E] diminishing by one. Therefore, here we limit ourselves to only a brief des-
cription of the main results. Under an analysis based on terms of up to fourth order three
subcases are possible (the n are integers):

30) 3k, 56 R, 4h,562n + 1; 3b) 3=y 30) dhy== 2n - 4
For subcase 3a}, in the normal foxrm (2.7)

KO = Do) '+ Dulp) 1 + O (@) 10 + Dpnd®
@30 (1) = 213000 €08 3¢y = 28123000 Sin g+ 26183010 €08 @y — 2by010 Sin

while the remaining functions are defined in (2.8). In formulas (2.4), from which the guant-
ities Guwmpe Owwuu. are computed, we need to set Ay =0, i.e., in (2,3} TFuwpwe = Ag (va— uy).

Theorem 3.1. 1f dhm+ B+ ales < b 7 0, then the equilibrium position is unstable.
However, if @yle) =0, then Theorem 2.1 is valid.

Tha €iygr zsssarticn in Thaorem 3.1 can he oroved hv uging the Chetasy function (2.8},
a.ut: b Ay i WP e AT ST MLVAI hil e AT e R - e FeWTEm Ay ME LAy Wl WA LSETY SiesLatiss A& s S

Henceforth, we take Py {p;)==0. Subcage 3b) is completely analoqous to subcase 1b), and
Theorem 2.2 is valid as well. Subcase 3c)is analogoug to subcase 1ld). Now the normal form
is defined by expressions (2.7}, (2.8}, wherein

o= Doy(@y) = 2apepq €08 4@y ~ 203byy00 IR 4y — Gpppy
Theorem 2.4 remains valid. In addition, to it we now can add on the statement: 3) If a value
* = 10,2n] exists such that @y (= 0. while @y (g:*)5=0, then the equilibrium position is
unstable. It can be proved by using the Chetaev function {(2.9) in which the subseripts 1 and
2 must be interchanged.

4. Now let #,=-(, while the elementary divisors are multiple. We note that in contrast
to the pxeviously‘considered cases, the motion of the linear system is unstable. However, as
in the autonomous probiem /4/, from such instability {the sclution grows as a linearly function
of time) there still does not follow the instability of the complete nonlinear system (see f?/
as well). . .

To varry out the nonlinear normalization we intyoduce the complex variables @7, P2 by
formulas (2.1) and we leave the vaziaable:s g P unchanged, denoting them now by ¢*, p,*, In
the complex variables now H,* =1/,6,p] - il,q.*p.*, while instead of (2.2) we now have the realness

conditions
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h:muw.= Uéﬁwﬂhzzvum, (4.1)

Then the equations for determining the coefficients of the generating function and the new
Hamiltonian are

(T - ir"“’fl""?) s:xv:u.u.. + 6 (v + 1) St.-l»], Ve da=l, e T ktw.pm; —_ g:n‘,u.u,y Ty pp, = Ay (Vo — e) (4.2)
From (4.2) we see that in K* we can suppress all terms except those for which Twyvuu =1
(integers) and p; =0 simultaneously, The coefficients of the other terms are determined by
formulas (2.4) in which ryuuu = Ax(vs— p,), while the constants Xwy,,, satisfy the realness
conditions (4.1). Then, having further made the substitution (2.6) for the variables with
subscript 2 and omitting the asterisk on the variables with subscript 1, we obtain a real
normal form of the Hamiltonian. Let kh s n (then are integers) for %4 =3, ..,m. In this
case, similarly to the autonomous problem /4/, we have

m [}2]
K= —;' 8P + Z Apat, Qf—”rg' + Kpnp1 ..
ka3 l==0
(— i)Lak_z,'_l’o, 1y l=2L, L=0, 1,2,...
(— D)L 8oby_si 1,000 I=2L41

where it is assumed that normalization has been carried out up to an orderm such that 4,, ,%0.

Ak—zl. 2l = {

Theorem 4.1. 1) Ifm is odd, then the equilibrium position is unstable. 2) If m is

even and §;4m, <0, then the equilibrium position is unstable. 3) If m is even and 6,4, o
>0, then the equilibrium position is stable when terms of up to order m are taken into account
4) I1fm is even, 8;4m,0 >0 and 84,5, >0, then the equilibrium position is formally stable.
5) 1f m is even, 814m, 0 >0 and the system has one degree of freedom, then its equilibrium
position is Liapunov-stable.

The proof of this theorem is obtained by combining the proofs of Theorem 4.1 of /4/ and
of Theorem 2.1 of the present paper. The subcases Jh,=n, 4\, =2n -+ 1 and others are invest-
igated analogously as in the preceding sections.

The authors thank A. P. Markeev, and also the participants and the director of V. V.
Rumiantsev's seminar for discussions.
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